Το γνωστικό αντικείμενο της μαθηματικής επιστήμης υποδιαιρείται σε τέσσερις βασικούς τομείς.

 

  • Τομέας Μαθηματικής Ανάλυσης

Η Μαθηματική Ανάλυση είναι ένας από τους ευρύτερους και βαθύτερους κλάδους των Μαθηματικών. Αν και κάθε οριοθέτηση αυτού του κλάδου είναι ίσως πιο δύσκολη σήμερα από όσο στο παρελθόν, θα μπορούσε να ειπωθεί ότι η Μαθηματική Ανάλυση αρχίζει από την εισαγωγή της έννοιας του «ορίου» και της συνακόλουθης απειροστικής αναλυτικής μεθόδου. Η θεωρία των Πραγματικών και των Μιγαδικών Συναρτήσεων, η Τοπολογία, οι Διαφορικές Εξισώσεις, η θεωρία Μέτρου και Ολοκλήρωσης, η Συναρτησιακή Ανάλυση είναι μερικές από τις βασικές και αλληλοεξαρτώμενες κατευθύνσεις της Μαθηματικής Ανάλυσης.

  • Τομέας Άλγεβρας και Γεωμετρίας

Ο Τομέας Άλγεβρας και Γεωμετρίας περιλαμβάνει κλάδους Μαθηματικών όπως η Άλγεβρα, η Διαφορική Γεωμετρία, η θεωρία Αριθμών, η Μαθηματική Λογική, η Διαφορική και Αλγεβρική Τοπολογία, η Αλγεβρική Γεωμετρία κλπ.
Η Άλγεβρα αναπτύχθηκε κυρίως τον 19ο και 20ο αιώνα με σκοπό την επίλυση συγκεκριμένων προβλημάτων από τη Γεωμετρία, τη θεωρία Αριθμών ή τη θεωρία Αλγεβρικών Εξισώσεων. Συνέβαλε ακόμη στην καλύτερη κατανόηση υπαρχουσών λύσεων σε τέτοιου είδους προβλήματα. Σήμερα η συμβολή της Άλγεβρας και σε άλλες θετικές επιστήμες, όπως στην επιστήμη των Ηλεκτρονικών Υπολογιστών, είναι σημαντική.
Η Διαφορική Γεωμετρία είναι ένας από τους κεντρικούς κλάδους των Μαθηματικών και ασχολείται με την μελέτη εννοιών όπως η μετρική και η καμπυλότητα. Η κλασική περίοδος της Διαφορικής Γεωμετρίας είναι ο δέκατος ένατος αιώνας, κατά τον οποίο αναπτύχθηκε η τοπική θεωρία των καμπυλών και επιφανειών ως εφαρμογή του Απειροστικού Λογισμού. Κατά τη διάρκεια του εικοστού αιώνα η εξέλιξη του κλάδου ήταν ραγδαία, στηριζόμενη στα πρόσφατα επιτεύγματα της θεωρίας των Διαφορικών Εξισώσεων με μερικές παραγώγους, την Αλγεβρική Τοπολογία και Αλγεβρική Γεωμετρία. Η δυναμική της Διαφορικής Γεωμετρίας είναι αποτέλεσμα και της αλληλεπίδρασής της με άλλες επιστήμες, όπως με τη Φυσική (θεωρία Σχετικότητας) κλπ.

  • Τομέας Πιθανοτήτων, Στατιστικής και Επιχειρησιακή Έρευνα

Το ερευνητικό πεδίο του συγκεκριμένου Τομέα του Τμήματος Μαθηματικών είναι οι Πιθανότητες και η Στατιστική. Οι Πιθανότητες και η Στατιστική είναι ο κλάδος των μαθηματικών, ο οποίος ασχολείται με την έννοια της αβεβαιότητας (πιθανότητας), τη σχεδίαση πειραμάτων και μεθόδων δειγματοληψιών, τη συλλογή και ανάλυση μετρήσεων (αριθμητικών δεδομένων) και την εξαγωγή συμπερασμάτων. Ασχολείται επίσης με τη μελέτη τυχαίων φαινομένων, την ανάπτυξη στοχαστικών μοντέλων για την περιγραφή διαφόρων φυσικών, κοινωνικών, βιολογικών και άλλων φαινομένων και γενικά με τη θεωρία και τις εφαρμογές των στοχαστικών διαδικασιών. Θέματα όπως σφυγμομέτρηση κοινής γνώμης, δημογραφικές έρευνες, ποιοτικός έλεγχος, δειγματοληπτικές έρευνες, κλινικές δοκιμές, αναδρομικές και προοπτικές ιατρικές μελέτες κλπ., ανήκουν στο χώρο των Πιθανοτήτων και της Στατιστικής. 
Επιχειρησιακή Έρευνα είναι ο κλάδος των Μαθηματικών που ασχολείται με τη βελτιστοποίηση συναρτήσεων πολλών μεταβλητών κάτω από ποικιλόμορφους περιορισμούς και τη μελέτη στοχαστικών συστημάτων, όπως ουρών αναμονής, αποθεμάτων, συστημάτων ανθρώπινου δυναμικού, πληθυσμιακών μοντέλων κλπ. Στηρίζεται στα θεωρητικά μαθηματικά και βρίσκει εφαρμογές σε όλους τους τομείς της ανθρώπινης δραστηριότητας όπου προκύπτει πρόβλημα μοντελοποίησης και βελτιστοποίησης. Τα μέλη του Τομέα ενδιαφέρονται και για τη μελέτη και κατανόηση των εφαρμογών της επιστήμης τους σε προβλήματα Ιατρικής, Χημείας, Περιβάλλοντος, Οικονομίας, Γεωπονίας, Ψυχολογίας, Παιδαγωγικής.

  • Τομέας Εφαρμοσμένων Μαθηματικών

Τα ερευνητικά ενδιαφέροντα των μελών του συγκεκριμένου τομέα είναι σε αντικείμενα της Μηχανικής, των Υπολογιστικών Μαθηματικών και της Πληροφορικής.

  • Η Μηχανική είναι ο παλαιότερος κλάδος των Εφαρμοσμένων Μαθηματικών, αφού αναπτύχθηκε παράλληλα και σε έντονη αλληλεπίδραση με την Κλασική Ανάλυση και πολύ συχνά από τους ίδιους ερευνητές. Για πολλά χρόνια αποτέλεσε το προνομιακό - ίσως και το αποκλειστικό - πεδίο εφαρμογής των καινούργιων μαθηματικών ιδεών. Σήμερα, η Μηχανική εξακολουθεί να αποτελεί κλάδο των Εφαρμοσμένων Μαθηματικών. Η ερευνητική ανάπτυξη της Μηχανικής, στις μέρες μας, λαμβάνει χώρα κυρίως στο πεδίο της Μηχανικής του Συνεχούς. Τα περισσότερα από τα προβλήματα που θέτει η σύγχρονη τεχνολογία στα Μαθηματικά, είναι διατυπωμένα στη «γλώσσα» της Μηχανικής του Συνεχούς. Το εύρος του αντικειμένου της Μηχανικής είναι τεράστιο, αφού εκτείνεται από τη μαθηματική περιγραφή ενός προβλήματος (μοντελοποίηση) και την «καλή τοποθέτηση» ως την επίλυσή του (αναλυτική - προσεγγιστική). Αυτό προσδιορίζει τις δυνατότητες αλληλεπίδρασης της Μηχανικής με όλους σχεδόν τους κλάδους των καθαρών και εφαρμοσμένων Μαθηματικών.
  • Τα Υπολογιστικά Μαθηματικά είναι κλάδος των Εφαρμοσμένων Μαθηματικών, που έχει ως βασικό σκοπό την παραγωγή, ανάλυση και χρήση αποτελεσματικών αριθμητικών (υπολογιστικών) μεθόδων (αλγορίθμων) για την επίλυση μαθηματικών προβλημάτων και κατά συνέπεια πραγματικών πρακτικών προβλημάτων των διάφορων επιστημών. Με τις αριθμητικές μεθόδους, που είναι πλήρως καθορισμένες πεπερασμένες διαδικασίες, μέσω ενός υπολογιστή αναζητούμε όσον το δυνατόν πιο ακριβείς αριθμητικές (προσεγγιστικές) λύσεις των μαθηματικών προβλημάτων με όσον το δυνατόν μικρότερο υπολογιστικό κόστος.
  • Τα γνωστικά αντικείμενα της Πληροφορικής είναι: Συμβολικοί Υπολογισμοί, Τεχνητή Νοημοσύνη, Υπολογιστική Γλωσσολογία, Παράλληλοι Αλγόριθμοι.

Διαβάστε ακόμα

Που θα μας βρείτε

1η Πάροδος Οπλαρχηγού Λακέρδα 6
Ιεράπετρα, Κρήτη

 

6972280996 και 2842110582

 

dimitris_papadakis@yahoo.gr contact@dpmath.gr

Στείλτε μας μήνυμα

{mosmap}